Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer.

Identifieur interne : 000268 ( Main/Exploration ); précédent : 000267; suivant : 000269

Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer.

Auteurs : Emiliano Matos-Perdomo [Espagne] ; Félix Machín [Espagne]

Source :

RBID : pubmed:31357498

Descripteurs français

English descriptors

Abstract

Once thought a mere ribosome factory, the nucleolus has been viewed in recent years as an extremely sensitive gauge of diverse cellular stresses. Emerging concepts in nucleolar biology include the nucleolar stress response (NSR), whereby a series of cell insults have a special impact on the nucleolus. These insults include, among others, ultra-violet radiation (UV), nutrient deprivation, hypoxia and thermal stress. While these stresses might influence nucleolar biology directly or indirectly, other perturbances whose origin resides in the nucleolar biology also trigger nucleolar and systemic stress responses. Among the latter, we find mutations in nucleolar and ribosomal proteins, ribosomal RNA (rRNA) processing inhibitors and ribosomal DNA (rDNA) transcription inhibition. The p53 protein also mediates NSR, leading ultimately to cell cycle arrest, apoptosis, senescence or differentiation. Hence, NSR is gaining importance in cancer biology. The nucleolar size and ribosome biogenesis, and how they connect with the Target of Rapamycin (TOR) signalling pathway, are also becoming important in the biology of aging and cancer. Simple model organisms like the budding yeast Saccharomyces cerevisiae, easy to manipulate genetically, are useful in order to study nucleolar and rDNA structure and their relationship with stress. In this review, we summarize the most important findings related to this topic.

DOI: 10.3390/cells8080779
PubMed: 31357498
PubMed Central: PMC6721496


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer.</title>
<author>
<name sortKey="Matos Perdomo, Emiliano" sort="Matos Perdomo, Emiliano" uniqKey="Matos Perdomo E" first="Emiliano" last="Matos-Perdomo">Emiliano Matos-Perdomo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Canaries</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, 38200 Tenerife, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, 38200 Tenerife</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Canaries</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Machin, Felix" sort="Machin, Felix" uniqKey="Machin F" first="Félix" last="Machín">Félix Machín</name>
<affiliation wicri:level="2">
<nlm:affiliation>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain. fmachin@funcanis.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Canaries</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Tenerife, Spain. fmachin@funcanis.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Tenerife</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Canaries</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Santa María de Guía, Gran Canaria, Spain. fmachin@funcanis.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Santa María de Guía, Gran Canaria</wicri:regionArea>
<wicri:noRegion>Gran Canaria</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31357498</idno>
<idno type="pmid">31357498</idno>
<idno type="doi">10.3390/cells8080779</idno>
<idno type="pmc">PMC6721496</idno>
<idno type="wicri:Area/Main/Corpus">000224</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000224</idno>
<idno type="wicri:Area/Main/Curation">000224</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000224</idno>
<idno type="wicri:Area/Main/Exploration">000224</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer.</title>
<author>
<name sortKey="Matos Perdomo, Emiliano" sort="Matos Perdomo, Emiliano" uniqKey="Matos Perdomo E" first="Emiliano" last="Matos-Perdomo">Emiliano Matos-Perdomo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Canaries</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, 38200 Tenerife, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, 38200 Tenerife</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Canaries</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Machin, Felix" sort="Machin, Felix" uniqKey="Machin F" first="Félix" last="Machín">Félix Machín</name>
<affiliation wicri:level="2">
<nlm:affiliation>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain. fmachin@funcanis.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Canaries</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Tenerife, Spain. fmachin@funcanis.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Tenerife</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Canaries</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Santa María de Guía, Gran Canaria, Spain. fmachin@funcanis.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Santa María de Guía, Gran Canaria</wicri:regionArea>
<wicri:noRegion>Gran Canaria</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="eISSN">2073-4409</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (genetics)</term>
<term>Animals (MeSH)</term>
<term>Cell Cycle Checkpoints (genetics)</term>
<term>Chromatin (genetics)</term>
<term>Chromatin (metabolism)</term>
<term>DNA, Ribosomal (chemistry)</term>
<term>DNA, Ribosomal (genetics)</term>
<term>Epigenomics (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Neoplasms (genetics)</term>
<term>Neoplasms (metabolism)</term>
<term>Nucleic Acid Conformation (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Stress, Physiological (genetics)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Yeasts (genetics)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ribosomique (composition chimique)</term>
<term>ADN ribosomique (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Chromatine (génétique)</term>
<term>Chromatine (métabolisme)</term>
<term>Conformation d'acide nucléique (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Levures (génétique)</term>
<term>Levures (métabolisme)</term>
<term>Points de contrôle du cycle cellulaire (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Stress physiologique (génétique)</term>
<term>Tumeurs (génétique)</term>
<term>Tumeurs (métabolisme)</term>
<term>Vieillissement (génétique)</term>
<term>Épigénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chromatin</term>
<term>DNA, Ribosomal</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN ribosomique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aging</term>
<term>Cell Cycle Checkpoints</term>
<term>Neoplasms</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress, Physiological</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN ribosomique</term>
<term>Chromatine</term>
<term>Facteurs de transcription</term>
<term>Levures</term>
<term>Points de contrôle du cycle cellulaire</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress physiologique</term>
<term>Tumeurs</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chromatin</term>
<term>Neoplasms</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chromatine</term>
<term>Facteurs de transcription</term>
<term>Levures</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Epigenomics</term>
<term>Humans</term>
<term>Nucleic Acid Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation d'acide nucléique</term>
<term>Humains</term>
<term>Épigénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Once thought a mere ribosome factory, the nucleolus has been viewed in recent years as an extremely sensitive gauge of diverse cellular stresses. Emerging concepts in nucleolar biology include the nucleolar stress response (NSR), whereby a series of cell insults have a special impact on the nucleolus. These insults include, among others, ultra-violet radiation (UV), nutrient deprivation, hypoxia and thermal stress. While these stresses might influence nucleolar biology directly or indirectly, other perturbances whose origin resides in the nucleolar biology also trigger nucleolar and systemic stress responses. Among the latter, we find mutations in nucleolar and ribosomal proteins, ribosomal RNA (rRNA) processing inhibitors and ribosomal DNA (rDNA) transcription inhibition. The p53 protein also mediates NSR, leading ultimately to cell cycle arrest, apoptosis, senescence or differentiation. Hence, NSR is gaining importance in cancer biology. The nucleolar size and ribosome biogenesis, and how they connect with the Target of Rapamycin (TOR) signalling pathway, are also becoming important in the biology of aging and cancer. Simple model organisms like the budding yeast
<i>Saccharomyces cerevisiae</i>
, easy to manipulate genetically, are useful in order to study nucleolar and rDNA structure and their relationship with stress. In this review, we summarize the most important findings related to this topic.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31357498</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2073-4409</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Cells</Title>
<ISOAbbreviation>Cells</ISOAbbreviation>
</Journal>
<ArticleTitle>Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E779</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/cells8080779</ELocationID>
<Abstract>
<AbstractText>Once thought a mere ribosome factory, the nucleolus has been viewed in recent years as an extremely sensitive gauge of diverse cellular stresses. Emerging concepts in nucleolar biology include the nucleolar stress response (NSR), whereby a series of cell insults have a special impact on the nucleolus. These insults include, among others, ultra-violet radiation (UV), nutrient deprivation, hypoxia and thermal stress. While these stresses might influence nucleolar biology directly or indirectly, other perturbances whose origin resides in the nucleolar biology also trigger nucleolar and systemic stress responses. Among the latter, we find mutations in nucleolar and ribosomal proteins, ribosomal RNA (rRNA) processing inhibitors and ribosomal DNA (rDNA) transcription inhibition. The p53 protein also mediates NSR, leading ultimately to cell cycle arrest, apoptosis, senescence or differentiation. Hence, NSR is gaining importance in cancer biology. The nucleolar size and ribosome biogenesis, and how they connect with the Target of Rapamycin (TOR) signalling pathway, are also becoming important in the biology of aging and cancer. Simple model organisms like the budding yeast
<i>Saccharomyces cerevisiae</i>
, easy to manipulate genetically, are useful in order to study nucleolar and rDNA structure and their relationship with stress. In this review, we summarize the most important findings related to this topic.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Matos-Perdomo</LastName>
<ForeName>Emiliano</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0001-9783-3591</Identifier>
<AffiliationInfo>
<Affiliation>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, 38200 Tenerife, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Machín</LastName>
<ForeName>Félix</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0003-4559-7798</Identifier>
<AffiliationInfo>
<Affiliation>Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain. fmachin@funcanis.es.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Tenerife, Spain. fmachin@funcanis.es.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Santa María de Guía, Gran Canaria, Spain. fmachin@funcanis.es.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cells</MedlineTA>
<NlmUniqueID>101600052</NlmUniqueID>
<ISSNLinking>2073-4409</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002843">Chromatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059447" MajorTopicYN="N">Cell Cycle Checkpoints</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002843" MajorTopicYN="N">Chromatin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057890" MajorTopicYN="N">Epigenomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="Y">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">TORC1</Keyword>
<Keyword MajorTopicYN="Y">aging</Keyword>
<Keyword MajorTopicYN="Y">cancer</Keyword>
<Keyword MajorTopicYN="Y">nucleolar condensation</Keyword>
<Keyword MajorTopicYN="Y">nucleolar stress</Keyword>
<Keyword MajorTopicYN="Y">ribosome biogenesis</Keyword>
<Keyword MajorTopicYN="Y">sirtuins</Keyword>
<Keyword MajorTopicYN="Y">yeast nucleolus</Keyword>
<Keyword MajorTopicYN="Y">yeast rDNA</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31357498</ArticleId>
<ArticleId IdType="pii">cells8080779</ArticleId>
<ArticleId IdType="doi">10.3390/cells8080779</ArticleId>
<ArticleId IdType="pmc">PMC6721496</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2010 Aug 27;329(5995):1012-3; author reply 1013-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 24;6:21900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26906758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1999 Feb;9(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2019 Mar;29(3):325-333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30765617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2017 Feb 7;112(3):450-459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27931745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2001;66:567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12762058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Aug 29;277(5330):1313-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9271578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Sep;38(16):5315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 29;44(2):538-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26615196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Dec 15;8(24):4085-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19823048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Oct 29;42(19):12189-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Oncol. 2002 Aug;3(8):487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2019 Mar 1;30(5):591-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30625028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2008 Mar;30(3):267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18293366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 02;485(7396):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22552098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9674-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26195783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Med Chem Lett. 2012 May 08;3(7):602-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24900516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2013 Nov;19(11):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 14;117(4):441-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2011 Feb 15;71(4):1418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21159662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Micron. 2000 Apr;31(2):117-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NPJ Aging Mech Dis. 2016 Aug 18;2:16017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28721271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Sep 15;6(18):2213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17671437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 28;285(22):16572-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20351095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Jun 12;290(24):14963-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25882841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Aug 5;28(15):2220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Sep 1;26(17):3871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9705492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jun 6;153(6):1194-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23746838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1969 May 23;164(3882):955-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5813982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jun;1842(6):802-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24389329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2017 Oct;16(5):994-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28613034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 14;117(4):455-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2019 Mar 1;33(5-6):288-293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30804227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Jun 19;173(6):893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16769819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Nov 16;362(6416):770-775</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30442801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jan 17;168(2):209-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Oct 22;40(2):216-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2006 Dec;5(6):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17129213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1981 Nov;1(11):1007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7050661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2019 Mar;26(4):630-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30647432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Med. 2016 Aug 01;6(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26801896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Jul;8(7):574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17519961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Sep 15;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27630122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2017 Sep;7(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28903997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Nov 17;22(22):6045-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Otolaryngol. 2007 Dec;127(12):1332-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17851903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2000 Jun;191(2):181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10861579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Apr;17(4):1768-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Sep;2(9):E296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Oct 1;69(19):7653-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19738048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 May 14;34(4):416-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2007 Aug;6(2):128-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Mar 4;156(5):805-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11864994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Mar 10;15(3):e2000245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28282370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2018;17(2):200-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29166821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2015 Dec;21(12):1406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26646497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):107-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 2;309(5740):1581-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2011 Mar;3(3):319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21415463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1124-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2013 Dec;38(12):585-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24126073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1861-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Dec 15;12(24):3821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9869636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Aug;9(8):923-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17643116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2015 Aug;17(8):1108-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26041433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 12;458(7235):219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2018 May 22;10(5):857-858</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29788001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2010 Nov-Dec;1(3):415-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21956940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics Chromatin. 2016 Aug 17;9:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2006 Oct;4(4):259-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 1996 Jul;27(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8698311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 14;284(33):21908-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 Feb;14(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24373458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2006 Jul;8(7):1147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16819967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Mar 26;161(1):106-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25815989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Sep 5;47(15):8019-8035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31184714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 Sep 7;13(9):e1006994</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28880866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Aug 30;8(1):328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28855503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Feb 20;14(2):e1007216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29462149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2018 Dec 7;430(24):4874-4890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30359581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2005 Aug;4(8):1036-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16205120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1993 Aug;7(8):1609-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8339936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Feb;6(1):95-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Surg Pathol. 2011 Aug;35(8):1134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21716085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2011 Dec 1;489(1):55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21924331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2015 Jan-Feb;6(1):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25176256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathol Res Pract. 2013 Nov;209(11):700-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24054033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2018 May 3;70(3):502-515.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29727620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 27;285(35):27385-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20605781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2018 Aug 1;18(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29788208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Nov 6;27(21):3248-3263.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29056450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2003 Sep;67(3):376-99, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12966141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2013 Dec;122(6):487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24022641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>iScience. 2018 Jun 29;4:216-235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30027155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 May 15;149(4):811-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10811823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 5;273(23):14484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9603962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2007 Feb;5(2):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17224921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2018 Aug 6;217(8):2675-2690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29959231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Jun 19;157(7):1515-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24949965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):292-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 May;11(5):317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20414256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Nov 1;20(21):2973-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Dec 26;91(7):1033-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9428525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2017 Jan 1;17(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28087673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Oncol Hematol. 2016 Jan;97:56-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26315383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Feb;15(2):946-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 8;423(6936):181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cancer. 2016 Nov;2(11):688-697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28741507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(9):e1003805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24068969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2014 Sep 24;12:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25248920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Urol. 2016 Jul;70(1):93-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2016 Jun 01;80(3):545-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27250769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biogerontology. 2014 Jun;15(3):289-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24711086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2016 Dec;17(12):1829-1843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Sep;5(18):2087-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Feb 9;14(5):1010-1017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26832415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Oct;6(5):649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17711561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Aug;203(4):1733-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27343235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2018 May 16;10(441):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29769289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2011 May;33(5):386-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21425306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 Aug 20;6(289):ra70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23962978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Apr 16;328(5976):321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Anat (Basel). 1956;26(4):352-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13338964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2004 Apr;3(4):496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 11;459(7248):802-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2018 May;37(18):2351-2366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29429989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 1976 Oct 28;58(2):193-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">826377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Oct 1;11(19):2522-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9334317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2012 Oct 15;1(4):774-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Nov;27(22):8015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17875934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jan 3;343(6166):77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24385627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Nov 25;203(4):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24385483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Aug;203(4):1563-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27516616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 May;125(3):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8175878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Jun;17(3):281-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Nov 28;4:e1039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26615018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1998 Oct 5;143(1):23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9763418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleus. 2012 Mar 1;3(2):115-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22198683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2019 Apr 26;13:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31080406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Sep 6;46(15):7586-7611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30011030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Sep 21;586(19):3435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22850112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2018 Mar 8;39(3):368-374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29346503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2011 May;16(5):491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histochem Cell Biol. 2018 Dec;150(6):607-629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30105457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Aug;176(4):2139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Jan 1;6(1):11-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Oct 1;25(19):2093-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21940764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2005 Aug;83(4):449-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16094448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Apr 8;28(7):854-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2004 Jul;3(7):960-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15190202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Nov;17(11):4888-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2013 Jul;33(14):2748-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23689130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2014 Nov;25(11):558-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25153840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Jun 3;28(11):1562-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19387493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2019 Feb 21;73(4):645-654.e13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30612878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 Jul 3;16(1):18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Dec 14;552(7684):263-267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29186112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2008 Aug;173(2):301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18583314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Mar;39(4):1336-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Sci. 2012 Apr;103(4):632-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22320853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Mar 9;128(5):837-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17350571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 May 1;22(9):1190-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2012 Sep 11;5(241):pe38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22969157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pathol Microbiol Scand. 1956;38(5):364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13339330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1981 Nov;1(11):1016-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7050662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Aug 30;8:16083</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28853436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jan 20;14(2):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14738734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(4):119-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Apr;11(4):1293-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10749930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Dec;21(6):855-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19796927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Aug;40(14):6534-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2010 Jul 29;29(30):4253-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Oct;5(19):2260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16969110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Sep 15;19(18):2122-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16131611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Oct 15;21(20):5498-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Oct 2;5(10):e261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2003 Oct;13(10):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Nov 2;45(19):11159-11173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28977453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1991 Aug 1;51(15):4008-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1713125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Aug 1;20(15):2030-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2019 Jan 17;73(2):325-338.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30527664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2019 Feb;18(1):e12843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30334314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Apr 15;19(8):933-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Dec 4;456(7222):667-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18997772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1999;33:261-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10690410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2017 Nov;18(11):651</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28951566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Apr 08;6:6643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25851096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1993 Nov;9(11):1165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8109166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Mol Basis Dis. 2018 Sep;1864(9 Pt A):2690-2696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29524633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diagn Pathol. 2017 Dec 29;12(1):88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29284501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 1978 Dec;8(6):417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">739801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jan 1;18(1):76-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2017 Jun 15;130(12):2049-2055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28476936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 14;117(4):471-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 May;16(5):2395-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15758027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 Apr 16;6(271):ra24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23592839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2019 Mar 4;29(5):737-749.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30773367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cancer. 2018 Sep 8;9(20):3723-3727</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30405843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2019 Mar;27(1-2):109-127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30656516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2018 Aug;28(8):662-672</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29779866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2005 Apr;15(4):194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jan 24;26(2):448-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17203076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2004;12(5):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15252239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2009 Dec;8(6):624-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19732046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jun 15;10(12):1940-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21555915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 18;123(4):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2019 Mar 12;10:192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30915107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Micron. 2000 Apr;31(2):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Nov;195(3):643-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24190922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2017 Jun 3;16(11):1118-1127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28426272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2003 Mar;3(3):179-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncoscience. 2014 May 25;1(5):375-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25594032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jun 16;165(7):1686-1697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27212236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jul 19;297(5580):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jun;11(6):2175-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10848637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Nov 1;39(20):8778-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21768125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 17;272(42):26457-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9334222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2019 Jun;58:105-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30928833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Mar 26;37(6):809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2013 Jul 02;9:679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23820781</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Canaries</li>
</region>
</list>
<tree>
<country name="Espagne">
<region name="Canaries">
<name sortKey="Matos Perdomo, Emiliano" sort="Matos Perdomo, Emiliano" uniqKey="Matos Perdomo E" first="Emiliano" last="Matos-Perdomo">Emiliano Matos-Perdomo</name>
</region>
<name sortKey="Machin, Felix" sort="Machin, Felix" uniqKey="Machin F" first="Félix" last="Machín">Félix Machín</name>
<name sortKey="Machin, Felix" sort="Machin, Felix" uniqKey="Machin F" first="Félix" last="Machín">Félix Machín</name>
<name sortKey="Machin, Felix" sort="Machin, Felix" uniqKey="Machin F" first="Félix" last="Machín">Félix Machín</name>
<name sortKey="Matos Perdomo, Emiliano" sort="Matos Perdomo, Emiliano" uniqKey="Matos Perdomo E" first="Emiliano" last="Matos-Perdomo">Emiliano Matos-Perdomo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000268 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000268 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31357498
   |texte=   Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31357498" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020